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EXERCISE 6.4

1. Using differentials, find the approximate value of each of the following up to 3

places of decimal.

(i) 25.3 (ii) 49.5 (iii) 0.6

(iv)

1

3(0.009) (v)

1

10(0.999) (vi)

1

4(15)

(vii)

1

3(26) (viii)

1

4(255) (ix)

1

4(82)

(x)

1

2(401) (xi)

1

2(0.0037) (xii)

1

3(26.57)

(xiii)

1

4(81.5) (xiv)

3

2(3.968) (xv)

1

5(32.15)

2. Find the approximate value of  f (2.01), where f (x) = 4x2 + 5x + 2.

3. Find the approximate value of  f (5.001), where f (x) = x3 – 7x2 + 15.

4. Find the approximate change in the volume V of a cube of side x metres caused

by increasing the side by 1%.

5. Find the approximate change in the surface area of a cube of side x metres

caused by decreasing the side by 1%.

6. If the radius of a sphere is measured as 7 m with an error of 0.02 m, then find the

approximate error in calculating its volume.

7. If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the

approximate error in calculating its surface area.

8. If  f(x) = 3x2 + 15x + 5, then the approximate value of  f (3.02) is

(A) 47.66 (B) 57.66 (C) 67.66 (D) 77.66

9. The approximate change in the volume of a cube of side x metres caused by

increasing the side by 3% is

(A) 0.06 x3  m3 (B) 0.6 x3  m3 (C) 0.09 x3  m3 (D) 0.9 x3  m3

6.6  Maxima and Minima

In this section, we will use the concept of derivatives to calculate the maximum or

minimum values of  various functions. In fact, we will find the ‘turning points’ of the

graph of a function and thus find points at which the graph reaches its highest (or

2021-22



APPLICATION OF DERIVATIVES 217

lowest) locally. The knowledge of such points is very useful in sketching the graph of

a given function. Further, we will also find the absolute maximum and absolute minimum

of a function that are necessary for the solution of many applied problems.

Let us consider the following problems that arise in day to day life.

(i) The profit from a grove of orange trees is given by P(x) = ax + bx2, where a,b

are constants and x is the number of orange trees per acre. How many trees per

acre will maximise the profit?

(ii) A ball, thrown into the air from a building 60 metres high, travels along a path

given by 

2

( ) 60
60

x
h x x= + − , where x is the horizontal distance from the building

and h(x) is the height of the ball . What is the maximum height the ball will

reach?

(iii) An Apache helicopter of enemy is flying along the path given by the curve

f (x) = x2 + 7. A soldier, placed at the point (1, 2), wants to shoot the helicopter

when it is nearest to him. What is the nearest distance?

In each of the above problem, there is something common, i.e., we wish to find out

the maximum or minimum values of the given functions. In order to tackle such problems,

we first formally define maximum or minimum values of a function, points of local

maxima and minima and test for determining such points.

Definition 3 Let f be a function defined on an interval I. Then

(a)  f is said to have a maximum value in I, if there exists a point c in I such that

( ) ( )>f c f x , for all x ∈ I.

The number f (c) is called the maximum value of f in I and the point c is called a

point of maximum value of f in I.

(b)  f  is said to have a minimum value in I, if there exists a point c in I such that

f (c) < f (x), for all x ∈ I.

The number f (c), in this case, is called the minimum value of f in I and the point

c, in this case, is called a point of minimum value of  f  in I.

(c) f is said to have an extreme value in I if there exists a point c in I such that

f (c) is either a maximum value or a minimum value of f  in I.

The number  f (c), in this case, is called an extreme value of  f  in I and the point c

is called an extreme point.

Remark In Fig 6.9(a), (b) and (c), we have exhibited that graphs of certain particular

functions  help us to find maximum value and minimum value at a point. Infact, through

graphs, we can even find maximum/minimum value of a function at a point at which it

is not even differentiable (Example 27).
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Fig 6.9

Example 26 Find the maximum and the minimum values,

if any, of the function f  given by

f (x) = x2, x ∈ R.

Solution From the graph of the given function (Fig 6.10),

we have  f (x) = 0 if x = 0. Also

f (x) ≥ 0, for all x ∈ R.

Therefore, the minimum value of  f  is 0 and the point

of minimum value of f is x = 0. Further, it may be observed

from the graph of the function that f  has no maximum

value and hence no point of maximum value of  f  in R.

ANote  If we restrict the domain of  f to [– 2, 1] only,

then f will have maximum value(– 2)2 = 4 at x = – 2.

Example 27 Find the maximum and minimum values

of  f , if any, of the function given by f (x) = | x |, x ∈ R.

Solution From the graph of the given function

(Fig 6.11) , note that

f (x) ≥ 0, for all x ∈ R and  f (x) = 0  if  x = 0.

Therefore, the function f has a minimum value 0

and the point of minimum value of f is x = 0. Also, the

graph clearly shows that f has no maximum value in

R and hence no point of maximum value in R.

ANote

(i) If we restrict the domain of f to [– 2, 1] only, then f will have maximum value
|– 2| = 2.

Fig 6.10

Fig 6.11
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(ii) One may note that the function f in Example 27 is not differentiable at
x = 0.

Example 28 Find the maximum and the minimum values, if any, of the function
given by

f (x) = x, x ∈ (0, 1).

Solution The given function is an increasing (strictly) function in the given interval

(0, 1). From the graph (Fig 6.12) of the function f , it
seems that, it should have the minimum value at a
point closest to 0 on its right and the maximum value
at a point closest to 1 on its left. Are such points

available? Of course, not. It is not possible to locate
such points. Infact, if a point x

0
 is closest to 0, then

we find 
0

0
2

x
x<  for all 0 (0,1)x ∈ . Also, if x

1
 is

closest to 1, then 
1

1

1

2

x
x

+
>  for all 1 (0,1)x ∈ .

Therefore, the given function has neither the maximum value nor the minimum

value in the interval (0,1).

Remark The reader may observe that in Example 28, if we include the points 0 and 1
in the domain of  f , i.e., if we extend the domain of  f  to [0,1], then the function  f  has
minimum value 0 at x = 0 and maximum value 1 at x = 1. Infact, we have the following

results (The proof of these results are beyond the scope of the present text)

Every monotonic function assumes its maximum/minimum value at the end

points of the domain of definition of the function.

A more general result is

Every continuous function on a closed interval has a maximum and a minimum

value.

ANote  By a monotonic function f  in an interval I, we mean that f  is either

increasing in I or decreasing in I.

Maximum and minimum values of a function defined on a closed interval will be
discussed later in this section.

Let us now examine the graph of a function as shown in Fig 6.13. Observe that at
points A, B, C and D on the graph, the function changes its nature from decreasing to
increasing or vice-versa. These points may be called turning points of the given
function. Further, observe that at turning points, the graph has either a little hill or a little

valley. Roughly speaking, the function has minimum value in some neighbourhood
(interval) of each of the points A and C which are at the bottom of their respective

Fig 6.12
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valleys. Similarly, the function has maximum value in some neighbourhood of points B
and D which are at the top of their respective hills. For this reason, the points A and C

may be regarded as points of local minimum value (or relative minimum value) and
points B and D may be regarded as points of local maximum value (or relative maximum

value) for the function. The local maximum value and local minimum value of the
function are referred to as local maxima and local minima, respectively, of the function.

We now formally give the following definition

Definition 4 Let  f  be a real valued function and let c be an interior point in the domain
of f. Then

(a) c is called a point of local maxima if there is an h > 0 such that

f (c) ≥ f (x), for all x in (c – h, c + h), x ≠ c

The value f (c) is called the local maximum value of f.

(b) c is called a point of local minima if there is an h > 0 such that

f (c) ≤ f (x), for all  x in (c – h, c + h)

The value f (c) is called the local minimum value of f .

Geometrically, the above definition states that if  x = c is a point of local maxima of  f,
then the graph of f around c will be as shown in Fig 6.14(a). Note that the function f  is
increasing (i.e., f ′(x) > 0) in the interval (c – h, c) and decreasing (i.e., f ′(x) < 0) in the
interval (c, c + h).

This suggests that f ′(c) must be zero.

Fig 6.13

Fig 6.14
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Similarly, if c is a point of local minima of f , then the graph of f around c will be as

shown in Fig 6.14(b). Here f  is decreasing (i.e., f ′(x) < 0) in the interval (c – h, c) and

increasing (i.e., f ′(x) > 0) in the interval (c, c + h). This again suggest that f ′(c) must

be zero.

The above discussion lead us to the following theorem (without proof).

Theorem 2 Let  f  be a function defined on an open interval I. Suppose c ∈ I be  any

point. If f  has a local maxima or a local minima at x = c, then either f ′(c) = 0 or f  is not

differentiable at c.

Remark The converse of above theorem need

not be true, that is, a point at which the derivative

vanishes need not be a point of local maxima or

local minima. For example, if f (x) = x3, then f ′(x)

= 3x2 and so f ′(0) = 0. But 0 is neither a point of

local maxima nor a point of local minima (Fig 6.15).

ANote   A point c in the domain of a function

f at which either f ′(c) = 0 or f is not differentiable

is called a critical point of f. Note that if f is

continuous at c and f ′(c) = 0, then there exists

an h > 0 such that f is differentiable in the interval

(c – h, c + h).

We shall now give a working rule for finding points of local maxima or points of

local minima using only the first order derivatives.

Theorem 3 (First Derivative Test) Let f be a function defined on an open interval I.

Let f be continuous at a critical point c in I. Then

(i) If f ′(x) changes sign from positive to negative as x increases through c, i.e., if

f ′(x) > 0 at every point sufficiently close to and to the left of c, and f ′(x) < 0 at

every point sufficiently close to and to the right of c, then c is a point of local

maxima.

(ii) If f ′(x) changes sign from negative to positive as x increases through c, i.e., if

f ′(x) < 0 at every point sufficiently close to and to the left of c, and f ′(x) > 0 at

every point sufficiently close to and to the right of c, then c is a point of local

minima.

(iii) If f ′(x) does not change sign as x increases through c, then c is neither a point of

local maxima nor a point of local minima. Infact, such a point is called point of

inflection (Fig 6.15).

Fig 6.15
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ANote  If c is a point of local maxima of f , then f (c) is a local maximum value of

f. Similarly, if c is a point of local minima of f , then  f(c) is a local minimum value of f.

Figures 6.15 and 6.16, geometrically explain Theorem 3.

Fig 6.16

Example 29 Find all points of local maxima and local minima of the function f
given by

f (x) = x3 – 3x + 3.

Solution We have

f (x) = x3 – 3x + 3

or f ′(x) = 3x2 – 3 = 3(x – 1) (x + 1)

or f ′(x) = 0 at x = 1 and x = – 1

Thus, x = ± 1 are the only critical points which could possibly be the points of local

maxima and/or local minima of f . Let us first examine the point x = 1.

Note that for values close to 1 and to the right of 1, f ′(x) > 0 and  for values close

to 1 and to the left of 1, f ′(x) < 0. Therefore, by first derivative test, x  = 1 is a point

of local minima and local minimum value is f (1) = 1. In the case of x = –1, note that
f ′(x) > 0, for values close to and to the left of –1 and f ′(x) < 0, for values close to and

to the right of – 1. Therefore, by first derivative test, x = – 1 is a point of local maxima

and local maximum value is  f (–1) = 5.

Values of  x Sign of f ′′′′′(x) = 3(x – 1) (x + 1)

Close to 1     
to the right (say 1.1 etc.) >0

to the left (say 0.9 etc.) <0

Close to –1  
to the right (say 0.9 etc.) 0

to the left (say 1.1 etc.) 0

− <
− >
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Example 30 Find all the points of local maxima and local minima of the function f

given by

f (x) = 2x3 – 6x2 + 6x +5.

Solution We have

f (x) = 2x3 – 6x2 + 6x + 5

or f ′(x) = 6x2 – 12x + 6 = 6 (x – 1)2

or f ′(x) = 0    at   x = 1

Thus, x = 1 is the only critical point of  f . We shall now examine this point for local

maxima and/or local minima of f. Observe that f ′(x) ≥ 0, for all x ∈ R and in particular

f ′(x) > 0, for values close to 1 and to the left and to the right of 1. Therefore, by first

derivative test, the point x = 1 is neither a point of local maxima nor a point of local

minima. Hence x = 1 is a point of inflexion.

Remark One may note that since f ′(x), in Example 30, never changes its sign on R,

graph of f has no turning points and hence no point of local maxima or local minima.

We shall now give another test to examine local maxima and local minima of a

given function. This test is often easier to apply than the first derivative test.

Theorem 4 (Second Derivative Test) Let  f  be a function defined on an interval I

and c ∈ I. Let f  be twice differentiable at c. Then

(i) x = c is a point of local maxima if f ′(c) = 0 and f ″(c) < 0

The value f (c) is local maximum value of  f .

(ii) x = c is a point of local minima if ( ) 0f c =′  and f ″(c) > 0

In this case, f (c) is local minimum value of  f .

(iii) The test fails if f ′(c) = 0 and f ″(c) = 0.

In this case, we go back to the first derivative test and find whether c is a point of

local maxima, local minima or a point of inflexion.

ANote  As f is twice differentiable at c, we mean

second order derivative of f exists at c.

Example 31 Find local minimum value of the function f

given by  f (x) = 3 + |x |, x ∈ R.

Solution Note that the given function is not differentiable

at x  = 0. So, second derivative test fails. Let us try first

derivative test. Note that 0 is a critical point of f . Now

to the left of 0, f (x) = 3 – x and so f ′(x) = – 1 < 0. Also Fig 6.17
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to the right of 0, f (x) = 3 + x and so  f ′(x) = 1 > 0. Therefore, by first derivative test,

x = 0 is a point of  local minima of  f  and local minimum value of  f  is f (0) = 3.

Example 32 Find local maximum and local minimum values of the function  f  given by

f (x) = 3x4 + 4x3 – 12x2 + 12

Solution We have

f (x) = 3x4 + 4x3 – 12x2 + 12

or f ′(x) = 12x3 + 12x2 – 24x = 12x (x – 1) (x + 2)

or f ′(x) = 0 at x = 0, x = 1 and x = – 2.

Now f ″(x) = 36x2 + 24x – 24 = 12 (3x2 + 2x – 2)

or

′′ = − <
′′ = >
′′ − = >








f

f

f

( )

( )

( )

0 24 0

1 36 0

2 72 0

Therefore, by second derivative test, x  = 0 is a point of local maxima and local

maximum value of f at x = 0 is f (0) = 12 while x = 1 and x = – 2 are the points of local

minima and local minimum values of f at x = – 1 and – 2 are f (1) = 7 and f (–2) = –20,

respectively.

Example 33 Find all the points of local maxima and local minima of the function f

given by

f (x) = 2x3 – 6x2 + 6x +5.

Solution We have

f (x) = 2x3 – 6x2 + 6x +5

or

2 2( ) 6 12 6 6( 1)

( ) 12( 1)

f x x x x

f x x

 ′ = − + = −


′′ = −

Now f ′(x) = 0 gives x =1. Also f ″(1) = 0. Therefore, the second derivative test

fails in this case. So, we shall go back to the first derivative test.

We have already seen (Example 30) that, using first derivative test, x =1 is neither

a point of local maxima nor a point of local minima and so it is a point of inflexion.

Example 34 Find two positive numbers whose sum is 15 and the sum of whose

squares is minimum.

Solution Let one of the numbers be x. Then the other number is (15 – x). Let S(x)

denote the sum of the squares of these numbers. Then
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S(x) = x2 + (15 – x)2 = 2x2 – 30x + 225

or
S ( ) 4 30

S ( ) 4

x x

x

′ = −
 ′′ =

Now S′(x) = 0 gives 
15

2
x = . Also 

15
S 4 0

2

 ′′ = > 
 

. Therefore, by second derivative

test, 
15

2
x =  is the point of local minima of S. Hence the sum of squares of numbers is

minimum when the numbers are 
15

2
 and 

15 15
15

2 2
− = .

Remark Proceeding as in Example 34 one may prove that the two positive numbers,

whose sum is k and the sum of whose squares is minimum, are and
2 2

k k
.

Example 35 Find the shortest distance of the point (0, c) from the parabola y = x2,

where 
1

2
 ≤ c ≤ 5.

Solution Let (h, k) be any point on the parabola y = x2. Let D be the required distance

between (h, k) and (0, c). Then

                      2 2 2 2D ( 0) ( ) ( )h k c h k c= − + − = + − ... (1)

Since (h, k) lies on the parabola y = x2, we have k = h2. So (1) gives

D ≡ D(k) = 2( )k k c+ −

or D′(k) =
2

1 2( )

2 ( )

k c

k k c

+ −

+ −

Now D′(k) = 0 gives 
2 1

2

c
k

−
=

Observe that when 
2 1

2

c
k

−
< , then 2( ) 1 0k c− + < , i.e., D ( ) 0k′ < . Also when

2 1

2

c
k

−
> , then D ( ) 0k′ > . So, by first derivative test, D (k) is minimum at 

2 1

2

c
k

−
= .
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Hence, the required shortest distance is given by

2
2 1 2 1 2 1 4 1

D
2 2 2 2

c c c c
c

− − − −   = + − =   
   

ANote  The reader may note that in Example 35, we have used first derivative

test instead of the second derivative test as the former is easy and short.

Example 36 Let AP and BQ be two vertical poles at

points A and B, respectively. If AP = 16 m, BQ = 22 m

and AB = 20 m, then find the distance of a point R on

AB from the point A such that RP2 + RQ2 is minimum.

Solution Let R be a point on AB such that AR = x  m.

Then RB = (20 – x) m (as AB = 20 m). From Fig 6.18,

we have

RP2 = AR2 + AP2

and RQ2 = RB2 + BQ2

Therefore RP2 + RQ2 = AR2 + AP2 + RB2 + BQ2

= x2 + (16)2 + (20 – x)2 + (22)2

= 2x2 – 40x + 1140

Let S ≡ S(x) = RP2 + RQ2 = 2x2 – 40x + 1140.

Therefore S′(x) = 4x – 40.
Now S′(x) = 0 gives x = 10. Also S″(x) = 4 > 0, for all x and so S″(10) > 0.

Therefore, by second derivative test, x = 10 is the point of local minima of S. Thus, the
distance of R from A on AB is AR = x =10 m.

Example 37 If length of three sides of a trapezium other than base are equal to 10cm,
then find the area of the trapezium when it is maximum.

Solution The required trapezium is as given in Fig 6.19. Draw perpendiculars DP and

Fig 6.18

Fig 6.19
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CQ on AB. Let AP = x cm. Note that ∆APD ~ ∆BQC. Therefore, QB = x cm. Also, by

Pythagoras theorem, DP = QC = 2
100 x− . Let A be the area of the trapezium. Then

A ≡ A(x) =
1

2
(sum of parallel sides) (height)

= ( )21
(2 10 10) 100

2
x x+ + −

= ( )2
( 10) 100x x+ −

or A′(x) = ( )2

2

( 2 )
( 10) 100

2 100

x
x x

x

−
+ + −

−

=

2

2

2 10 100

100

x x

x

− − +

−

Now A′(x) = 0 gives 2x2 + 10x – 100 = 0, i.e., x  = 5 and x = –10.

Since x represents distance, it can not be negative.

So, x = 5. Now

A″(x) =

2 2

2

2

( 2 )
100 ( 4 10) ( 2 10 100)

2 100

100

x
x x x x

x

x

−
− − − − − − +

−
−

=

3

3

2 2

2 300 1000

(100 )

x x

x

− −

−
 (on simplification)

or A″(5) =

3

3

2 2

2(5) 300(5) 1000 2250 30
0

75 75 75
(100 (5) )

− − − −
= = <

−
Thus, area of trapezium is maximum at x = 5  and the area is given by

A (5) = 2 2(5 10) 100 (5) 15 75 75 3 cm+ − = =

Example 38 Prove that the radius of the right circular cylinder of greatest curved

surface area which can be inscribed in a given cone is half of that of the cone.

Solution Let OC = r be the radius of the cone and OA = h be its height. Let a cylinder

with radius OE = x inscribed in the given cone (Fig 6.20). The height QE of the cylinder

is given by

2021-22



 MATHEMATICS228

QE

OA
 =

EC

OC
   (since ∆QEC ~ ∆AOC)

or
QE

h
 =

r x

r

−

or QE =
( )h r x

r

−

Let S be the curved surface area of the given

cylinder. Then

S  ≡ S(x) = 
2 ( )xh r x

r

π −
 = 

22
( )

h
rx x

r

π
−

or

2
S ( ) ( 2 )

4
S ( )

h
x r x

r

h
x

r

π ′ = −
 − π ′′ =


Now S′(x) = 0 gives 
2

r
x = . Since S″(x) < 0 for all x, S 0

2

r ′′ < 
 

. So 
2

r
x =  is a

point of maxima of S. Hence, the radius of the cylinder of greatest curved surface area

which can be inscribed in a given cone is half of that of the cone.

6.6.1  Maximum and Minimum Values of a Function in a Closed Interval

Let us consider a function  f  given by

f (x) = x + 2, x ∈ (0, 1)

Observe that the function is continuous on (0, 1) and neither has a maximum value

nor has a minimum value. Further, we may note that the function even has neither a

local maximum value nor a local minimum value.

However, if we extend the domain of  f  to the closed interval [0, 1], then f still may

not have a local maximum (minimum) values but it certainly does have maximum value

3 = f (1) and minimum value 2 =  f (0). The maximum value 3 of f at x = 1 is called

absolute maximum value (global maximum or greatest value) of f on the interval

[0, 1]. Similarly, the minimum value 2 of f  at x  = 0 is called the absolute minimum

value (global minimum or least value) of f on [0, 1].

Consider the graph given in Fig 6.21 of a continuous function defined on a closed

interval [a, d]. Observe that the function f has a local minima at x = b and local

Fig 6.20
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